55 research outputs found

    Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry

    Full text link
    [EN] A new colorimetric system for NO(g) detection is described. The detection method is based on the aggregation of modified AuNPs through a Cu(I) catalyzed click reaction promoted by the in situ reduction of Cu(II) by NOWe acknowledge the Spanish Government (MAT2009-14564-C04-03 and MAT2012-38429-C04-02) for financial support. A. M. is grateful to the Spanish Government for a fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.Marti, A.; Costero Nieto, AM.; Gaviña Costero, P.; Parra Álvarez, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications. 51(15):3077-3079. https://doi.org/10.1039/c4cc10149aS307730795115Nagano, T. (1999). Practical methods for detection of nitric oxide. Luminescence, 14(6), 283-290. doi:10.1002/(sici)1522-7243(199911/12)14:63.0.co;2-gL. J. Ignarro , Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2010Ma, S., Fang, D.-C., Ning, B., Li, M., He, L., & Gong, B. (2014). The rational design of a highly sensitive and selective fluorogenic probe for detecting nitric oxide. Chem. Commun., 50(49), 6475-6478. doi:10.1039/c4cc01142bKojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., … Nagano, T. (1998). Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:  Diaminofluoresceins. Analytical Chemistry, 70(13), 2446-2453. doi:10.1021/ac9801723Chen, X., Tian, X., Shin, I., & Yoon, J. (2011). Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 40(9), 4783. doi:10.1039/c1cs15037eBeltrán, A., Isabel Burguete, M., Abánades, D. R., Pérez-Sala, D., Luis, S. V., & Galindo, F. (2014). Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 50(27), 3579. doi:10.1039/c3cc49555hLv, X., Wang, Y., Zhang, S., Liu, Y., Zhang, J., & Guo, W. (2014). A specific fluorescent probe for NO based on a new NO-binding group. Chem. Commun., 50(56), 7499-7502. doi:10.1039/c4cc03540bSaha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313vMartí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339Zhou, Y., Wang, S., Zhang, K., & Jiang, X. (2008). Visual Detection of Copper(II) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angewandte Chemie International Edition, 47(39), 7454-7456. doi:10.1002/anie.200802317Hua, C., Zhang, W. H., De Almeida, S. R. M., Ciampi, S., Gloria, D., Liu, G., … Gooding, J. J. (2012). A novel route to copper(ii) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. The Analyst, 137(1), 82-86. doi:10.1039/c1an15693dZhang, Y., Li, B., & Xu, C. (2010). Visual detection of ascorbic acid via alkyne–azide click reaction using gold nanoparticles as a colorimetric probe. The Analyst, 135(7), 1579. doi:10.1039/c0an00056fTran, D., & Ford, P. C. (1996). Nitric Oxide Reduction of the Copper(II) Complex Cu(dmp)22+(dmp = 2,9-Dimethyl-1,10-phenanthroline). Inorganic Chemistry, 35(9), 2411-2412. doi:10.1021/ic9511175Tsuge, K., DeRosa, F., Lim, M. D., & Ford, P. C. (2004). Intramolecular Reductive Nitrosylation:  Reaction of Nitric Oxide and a Copper(II) Complex of a Cyclam Derivative with Pendant Luminescent Chromophores. Journal of the American Chemical Society, 126(21), 6564-6565. doi:10.1021/ja049444bLim, M. H., & Lippard, S. J. (2005). Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution. Journal of the American Chemical Society, 127(35), 12170-12171. doi:10.1021/ja053150oApfel, U.-P., Buccella, D., Wilson, J. J., & Lippard, S. J. (2013). Detection of Nitric Oxide and Nitroxyl with Benzoresorufin-Based Fluorescent Sensors. Inorganic Chemistry, 52(6), 3285-3294. doi:10.1021/ic302793wHaiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084Lin, S.-Y., Tsai, Y.-T., Chen, C.-C., Lin, C.-M., & Chen, C. (2004). Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. The Journal of Physical Chemistry B, 108(7), 2134-2139. doi:10.1021/jp036310wLiu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.005Brotherton, W. S., Michaels, H. A., Simmons, J. T., Clark, R. J., Dalal, N. S., & Zhu, L. (2009). Apparent Copper(II)-Accelerated Azide−Alkyne Cycloaddition. Organic Letters, 11(21), 4954-4957. doi:10.1021/ol902111

    Towards the fluorogenic detection of peroxide explosives through host-guest chemistry

    Full text link
    [EN] Two dansyl-modified beta-cyclodextrin derivatives (1 and 2) have been synthesized as host-guest sensory systems for the direct fluorescent detection of the peroxide explosives diacetone diperoxide (DADP) and triacetone triperoxide (TATP) in aqueous media. The sensing is based on the displacement of the dansyl moiety from the cavity of the cyclodextrin by the peroxide guest resulting in a decrease of the intensity of the fluorescence of the dye. Both systems showed similar fluorescent responses and were more sensitive towards TATP than DADP.We thank the Spanish Government (MAT2015-64139-C4-4-R) and Generalitat Valenciana (PROMETEOII/2014/047) for financial support.Almenar, E.; Costero, AM.; Gaviña, P.; Gil Grau, S.; Parra Álvarez, M. (2018). Towards the fluorogenic detection of peroxide explosives through host-guest chemistry. Royal Society Open Science. 5(4). https://doi.org/10.1098/rsos.171787S54Dubnikova, F., Kosloff, R., Almog, J., Zeiri, Y., Boese, R., Itzhaky, H., … Keinan, E. (2005). Decomposition of Triacetone Triperoxide Is an Entropic Explosion. Journal of the American Chemical Society, 127(4), 1146-1159. doi:10.1021/ja0464903Fitzgerald, M., & Bilusich, D. (2011). Sulfuric, Hydrochloric, and Nitric Acid-Catalyzed Triacetone Triperoxide (TATP) Reaction Mixtures: An Aging Study. Journal of Forensic Sciences, 56(5), 1143-1149. doi:10.1111/j.1556-4029.2011.01806.xMatyáš, R., Pachman, J., & Ang, H.-G. (2009). Study of TATP: Spontaneous Transformation of TATP to DADP - Full Paper. Propellants, Explosives, Pyrotechnics, 34(6), 484-488. doi:10.1002/prep.200800043Matyas, R., Pachman, J., & Ang, H.-G. (2008). Study of TATP: Spontaneous Transformation of TATP to DADP. Propellants, Explosives, Pyrotechnics, 33(2), 89-91. doi:10.1002/prep.200700247Wang, J. (2007). Electrochemical Sensing of Explosives. Electroanalysis, 19(4), 415-423. doi:10.1002/elan.200603748Bauer, C., Willer, U., Lewicki, R., Pohlkötter, A., Kosterev, A., Kosynkin, D., … Schade, W. (2009). A Mid-infrared QEPAS sensor device for TATP detection. Journal of Physics: Conference Series, 157, 012002. doi:10.1088/1742-6596/157/1/012002Widmer, L., Watson, S., Schlatter, K., & Crowson, A. (2002). Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). The Analyst, 127(12), 1627-1632. doi:10.1039/b208350gZhang, Y., Ma, X., Zhang, S., Yang, C., Ouyang, Z., & Zhang, X. (2009). Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. The Analyst, 134(1), 176-181. doi:10.1039/b816230aGirotti, S., Ferri, E., Maiolini, E., Bolelli, L., D’Elia, M., Coppe, D., & Romolo, F. S. (2011). A quantitative chemiluminescent assay for analysis of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 400(2), 313-320. doi:10.1007/s00216-010-4626-3Walter, M. A., Panne, U., & Weller, M. G. (2011). A Novel Immunoreagent for the Specific and Sensitive Detection of the Explosive Triacetone Triperoxide (TATP). Biosensors, 1(3), 93-106. doi:10.3390/bios1030093Sella, E., & Shabat, D. (2008). Self-immolative dendritic probe for direct detection of triacetone triperoxide. Chemical Communications, (44), 5701. doi:10.1039/b814855dGermain, M. E., & Knapp, M. J. (2008). Turn-on Fluorescence Detection of H2O2and TATP. Inorganic Chemistry, 47(21), 9748-9750. doi:10.1021/ic801317xLin, H., & Suslick, K. S. (2010). A Colorimetric Sensor Array for Detection of Triacetone Triperoxide Vapor. Journal of the American Chemical Society, 132(44), 15519-15521. doi:10.1021/ja107419tLi, Z., Bassett, W. P., Askim, J. R., & Suslick, K. S. (2015). Differentiation among peroxide explosives with an optoelectronic nose. Chemical Communications, 51(83), 15312-15315. doi:10.1039/c5cc06221gAskim, J. R., Li, Z., LaGasse, M. K., Rankin, J. M., & Suslick, K. S. (2016). An optoelectronic nose for identification of explosives. Chemical Science, 7(1), 199-206. doi:10.1039/c5sc02632fUeno, A., Minato, S., Suzuki, I., Fukushima, M., Ohkubo, M., Osa, T., … Murai, K. (1990). Host–Guest Sensory System of Dansyl-Modifled β-Cyclodextrin for Detecting Steroidal Compounds by Dansyl Fluorescence. Chemistry Letters, 19(4), 605-608. doi:10.1246/cl.1990.605Hamasaki, K., Ikeda, H., Nakamura, A., Ueno, A., Toda, F., Suzuki, I., & Osa, T. (1993). Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. Journal of the American Chemical Society, 115(12), 5035-5040. doi:10.1021/ja00065a012Ikeda, H., Nakamura, M., Ise, N., Oguma, N., Nakamura, A., Ikeda, T., … Ueno, A. (1996). Fluorescent Cyclodextrins for Molecule Sensing:  Fluorescent Properties, NMR Characterization, and Inclusion Phenomena ofN-Dansylleucine-Modified Cyclodextrins. Journal of the American Chemical Society, 118(45), 10980-10988. doi:10.1021/ja960183iUeno, A., Kuwabara, T., Nakamura, A., & Toda, F. (1992). A modified cyclodextrin as a guest responsive colour-change indicator. Nature, 356(6365), 136-137. doi:10.1038/356136a0Ogoshi, T., & Harada, A. (2008). Chemical Sensors Based on Cyclodextrin Derivatives. Sensors, 8(8), 4961-4982. doi:10.3390/s80849616A-O-p-TOLUENESULFONYL-b-CYCLODEXTRIN. (2000). Organic Syntheses, 77, 225. doi:10.15227/orgsyn.077.0225Tang, W., & Ng, S.-C. (2008). Facile synthesis of mono-6-amino-6-deoxy-α-, β-, γ-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nature Protocols, 3(4), 691-697. doi:10.1038/nprot.2008.37Mourer, M., Hapiot, F., Monflier, E., & Menuel, S. (2008). Click chemistry as an efficient tool to access β-cyclodextrin dimers. Tetrahedron, 64(30-31), 7159-7163. doi:10.1016/j.tet.2008.05.095Eaton, D. F. (1988). Reference materials for fluorescence measurement. Pure and Applied Chemistry, 60(7), 1107-1114. doi:10.1351/pac19886007110

    A New Simple Chromo-fluorogenic Probe for NO2 Detection in Air

    Full text link
    [EN] A new chromo-fluorogenic probe, consisting of a biphenyl derivative containing both a silylbenzyl ether and a N,N-dimethylamino group, for NO2 detection in the gas phase has been developed. A clear colour change from colourless to yellow together with an emission quenching was observed when the probe reacted with NO2. A limit of detection to the naked eye of about 0.1 ppm was determined and the system was successfully applied to the detection of NO2 in realistic atmospheric conditions.We thank the Spanish Government (MAT2012‐38429‐C04) and Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. We thank Dr. A. Múñoz from the CEAM (Valencia‐Spain) for her help for the development of the measures in real environment.Juarez, LA.; Costero, AM.; Sancenón Galarza, F.; Martínez-Máñez, R.; Parra Álvarez, M.; Gaviña Costero, P. (2015). A New Simple Chromo-fluorogenic Probe for NO2 Detection in Air. Chemistry - A European Journal. 21(24):8720-8722. doi:10.1002/chem.201500608S87208722212

    Ecophysiological responses of grapevine rootstocks to water deficit

    Get PDF
    The use of rootstocks tolerant to soil water deficit is an interesting strategy to face the challenges posed by limited water availability. Currently, several nurseries are breeding new genotypes aiming to improve the water stress tolerance of grapevine, but the physiological basis of its responses under water stress are largely unknown. For this purpose, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in ungrafted potted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered (WW) and deficit irrigation (DI). Water potentials of plants under DI down to <-1.4 MPa, and net photosynthesis (AN) <5 μmol CO2m-2s-1 did not cause leaf oxidative stress damage compared to WW conditions in all genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both water regimes, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of roots and shoots. Under WW conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under DI, SO4 exhibited the greatest reduction in biomass, while 110R showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential and showed the highest hydraulic conductance values. Conversely, M1 reduced the most stomatal conductance, transpiration and AN. Overall, 110R achieved the highest biomass water use efficiency in response to DI, and SO4 the lowest, while M-rootstocks showed intermediate values. Our results suggest that there are differences in water use regulation among genotypes attributed not only to differences in stomatal regulation but also to plant hydraulic conductance. Therefore, it is hypothesized that differences in genotype performance may be due to root anatomical- morphological differences and to several physiological processes such as growth inhibition, osmotic adjustment, antioxidant production, nutrient translocation capacity, etc. Further studies are needed to confirm these differential ecophysiological responses of Vitis species under water stress, particularly under field and grafted conditions

    Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties

    Full text link
    Two new aryl carbinols (1 and 3) have been synthesised and characterised and their ability as OFF-ON probes for the chromogenic detection of the nerve agent simulant in acetonitrile has been tested. In addition compound 2 has been also studied. The carbinols suffered a phosphorylation reaction followed by an elimination process giving rise to the corresponding carbocations. This transformation of the carbinol into the carbocation is responsible for a significant color change. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012.Financial support from the Spanish Government (project MAT2009-14564-C04-01) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. R. G. is grateful to the Spanish Ministry of Education and S. R. to Generalitat Valencia for their grants.Royo Calvo, S.; Gotor Candel, RJ.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Martínez Mañez, R.; Sancenón Galarza, F. (2012). Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry. 36(12):1485-1489. https://doi.org/10.1039/c2nj40104eS148514893612Sadik, O. A., Land, W. H., & Wang, J. (2003). Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanalysis, 15(14), 1149-1159. doi:10.1002/elan.200390140Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013Im, H.-J., & Song, K. (2009). Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Applied Spectroscopy Reviews, 44(4), 317-334. doi:10.1080/05704920902852125Sohn, H., Létant, S., Sailor, M. J., & Trogler, W. C. (2000). Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society, 122(22), 5399-5400. doi:10.1021/ja0006200Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278fBurnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063bGiordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247aCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727fRoyo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241Duxbury, D. F. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chemical Reviews, 93(1), 381-433. doi:10.1021/cr00017a018Akiyama, S., Yoshida, K., Hayashida, M., Nakashima, K., Nakatsuji, S., & Iyoda, M. (1981). ETHYNOLOGS OF TRIPHENYLMETHANE DYES. SYNTHESES AND PROPERTIES OF ACETYLENIC ANALOGS OF MALACHITE GREEN, CRYSTAL VIOLET, AND THEIR RELATED COMPOUNDS. Chemistry Letters, 10(3), 311-314. doi:10.1246/cl.1981.311Dikusar, E. A. (2003). Tertiary Acetylenic Alcohols and Peroxides Derived from 4,4’-Bis(dimethylamino)benzophenone (Michler’s Ketone). Russian Journal of General Chemistry, 73(9), 1406-1409. doi:10.1023/b:rugc.0000015988.84852.9dGabbutt, C. D., Heron, B. M., Kilner, C., & Kolla, S. B. (2010). The influence of a 1,1-diarylvinyl moiety on the photochromism of naphthopyrans. Organic & Biomolecular Chemistry, 8(21), 4874. doi:10.1039/c0ob00141dAkiyama, S., Nakatsuji, S., Nakashima, K., & Yamasaki, S. (1988). Diphenylmethane and triphenylmethane dye ethynovinylogues with absorption bands in the near-infrared11Ethynologues of Triphenylmethane Dyes V: Part IV.2,3. Dyes and Pigments, 9(6), 459-466. doi:10.1016/0143-7208(88)82005-9Gorman, S. A., Hepworth, J. D., & Mason, D. (2000). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 3. Consequences of unsymmetrical substitution in Malachite Green. Journal of the Chemical Society, Perkin Transactions 2, (9), 1889-1895. doi:10.1039/b003219kNakatsuji, S., Okamoto, N., Nakashima, K., & Akiyama, S. (1986). SYNTHESIS AND ELECTRONIC ABSORPTION SPECTRA OF MONOETHYNOLOGS OF MALACHITE GREEN WITH p-SUBSTITUENT ON PHENYL RING. Chemistry Letters, 15(3), 329-332. doi:10.1246/cl.1986.329Tachikawa, T., Handa, C., & Tokita, S. (2003). Synthesis and Radiation Sensitivity of Tris (4-N,N-dimethylaminophenyl)methanethiol. Journal of Photopolymer Science and Technology, 16(2), 187-190. doi:10.2494/photopolymer.16.18

    Embarazo ectópico abdominal a término con feto vivo en mujer angolana adulta joven

    Get PDF
    Introducción: el embarazo ectópico abdominal es una anomalía excepcional que representa el 1 % de los embarazos ectópicos; se asocia con alta morbilidad y mortalidad materna y fetal. El riesgo de mortalidad materna es de siete a ocho veces mayor que el de un embarazo ectópico tubario y 90 veces mayor que el de un embarazo intrauterino. Presentación del caso: paciente angolana adulta joven con un embarazo ectópico abdominal diagnosticado al término del embarazo. Se trató con éxito mediante cesárea con extracción del feto vivo y sin complicaciones.  No se extrajo la placenta por encontrarse implantada al Meso intestinal y se aplicó tratamiento con metrotexate posterior a la intervención quirúrgica.Conclusiones: el embarazo abdominal es una enfermedad de difícil diagnóstico a pesar de los avances tecnológicos. Por lo que el sistema de salud debe establecer estrategias y programas educativos accesibles, dirigidos a la población femenina que tengan sospecha de embarazo ectópico. Una vez diagnosticado el embarazo abdominal, debe interrumpirse, a menos que la edad de gestación sea avanzada. El manejo de la placenta debe ser individualizado

    Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/ drugs in colon

    Full text link
    [EN] Mesoporous silica microparticles were prepared, loaded with the dye safranin O (M-Saf) or with the drug budesonide (M-Bud) and capped by the grafting of a bulky azo derivative. Cargo release from M-Saf at different pH values (mimicking those found in the gastrointestinal tract) in the absence or presence of sodium dithionite (a reducing agent mimicking azoreductase enzyme present in the colon) was tested. Negligible safranin O release was observed at pH 6.8 and 4.5, whereas a moderate delivery at pH 1.2 was noted and attributed to the hydrolysis of the urea bond that linked the azo derivative onto the external surface of the inorganic scaffold. Moreover, a marked release was observed when sodium dithionite was present and was ascribed to the rupture of the azo bond in the molecular gate. Budesonide release from M-Bud in the presence of sodium dithionite was also assessed by ultraviolet-visible spectroscopy and high performance liquid chromatography measurements. In addition, preliminary in vivo experiments with M-Saf carried out in mice indicated that the chemical integrity of the microparticles remained unaltered in the stomach and the small intestine, and safranin O seemed to be released in the colon.We thank the Spanish Government (projects MAT2015-64139-C4-4-R, MAT2015-64139-C4-2-R and MAT2015-64139-C4-1-R) and Generalitat Valenciana (project PROMETEOII/2014/047 and project AICO/2017/093) for financial support.Ferri, D.; Gaviña, P.; Parra Álvarez, M.; Costero, AM.; El Haskouri, J.; Amorós Del Toro, P.; Merino Sanjuán, V.... (2018). Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/ drugs in colon. Royal Society Open Science. 5(8). https://doi.org/10.1098/rsos.180873S58Xu, X.-M., & Zhang, H.-J. (2016). miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World Journal of Gastroenterology, 22(7), 2206-2218. doi:10.3748/wjg.v22.i7.2206DeFilippis, E. M., Longman, R., Harbus, M., Dannenberg, K., & Scherl, E. J. (2016). Crohn’s Disease: Evolution, Epigenetics, and the Emerging Role of Microbiome-Targeted Therapies. Current Gastroenterology Reports, 18(3). doi:10.1007/s11894-016-0487-zFakhoury, M., Al-Salami, H., Negrulj, R., & Mooranian, A. (2014). Inflammatory bowel disease: clinical aspects and treatments. Journal of Inflammation Research, 113. doi:10.2147/jir.s65979Mowat, C., Cole, A., Windsor, A., Ahmad, T., Arnott, I., … Driscoll, R. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut, 60(5), 571-607. doi:10.1136/gut.2010.224154Zeng, J., Lv, L., & Mei, Z.-C. (2017). Budesonide foam for mild to moderate distal ulcerative colitis: A systematic review and meta-analysis. Journal of Gastroenterology and Hepatology, 32(3), 558-566. doi:10.1111/jgh.13604Gareb, B., Eissens, A. C., Kosterink, J. G. W., & Frijlink, H. W. (2016). Development of a zero-order sustained-release tablet containing mesalazine and budesonide intended to treat the distal gastrointestinal tract in inflammatory bowel disease. European Journal of Pharmaceutics and Biopharmaceutics, 103, 32-42. doi:10.1016/j.ejpb.2016.03.018Marín-Jiménez, I., & Peña, A. S. (2006). Budesonide for ulcerative colitis. Revista Española de Enfermedades Digestivas, 98(5). doi:10.4321/s1130-01082006000500007Abdalla, M. I., & Herfarth, H. (2016). Budesonide for the treatment of ulcerative colitis. Expert Opinion on Pharmacotherapy, 17(11), 1549-1559. doi:10.1080/14656566.2016.1183648Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., … Gref, R. (2009). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172-178. doi:10.1038/nmat2608Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762hDu, X., Li, X., Xiong, L., Zhang, X., Kleitz, F., & Qiao, S. Z. (2016). Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 91, 90-127. doi:10.1016/j.biomaterials.2016.03.019Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592tNoureddine, A., & Brinker, C. J. (2018). Pendant/bridged/mesoporous silsesquioxane nanoparticles: Versatile and biocompatible platforms for smart delivery of therapeutics. Chemical Engineering Journal, 340, 125-147. doi:10.1016/j.cej.2018.01.086Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334mStein, A. (2003). Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress. Advanced Materials, 15(10), 763-775. doi:10.1002/adma.200300007Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414eColl, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Croissant, J., Maynadier, M., Gallud, A., Peindy N’Dongo, H., Nyalosaso, J. L., Derrien, G., … Zink, J. I. (2013). Two-Photon-Triggered Drug Delivery in Cancer Cells Using Nanoimpellers. Angewandte Chemie, 125(51), 14058-14062. doi:10.1002/ange.201308647Croissant, J., Chaix, A., Mongin, O., Wang, M., Clément, S., Raehm, L., … Zink, J. I. (2014). Two-Photon-Triggered Drug Delivery via Fluorescent Nanovalves. Small, 10(9), 1752-1755. doi:10.1002/smll.201400042Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018xBansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217wDoane, T. L., & Burda, C. (2012). The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 41(7), 2885. doi:10.1039/c2cs15260fAmidon, S., Brown, J. E., & Dave, V. S. (2015). Colon-Targeted Oral Drug Delivery Systems: Design Trends and Approaches. AAPS PharmSciTech, 16(4), 731-741. doi:10.1208/s12249-015-0350-9Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. doi:10.1016/j.nano.2015.02.018Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jPopat, A., Jambhrunkar, S., Zhang, J., Yang, J., Zhang, H., Meka, A., & Yu, C. (2014). Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem. Commun., 50(42), 5547-5550. doi:10.1039/c4cc00620hLi, X., Tang, T., Zhou, Y., Zhang, Y., & Sun, Y. (2014). Applicability of enzyme-responsive mesoporous silica supports capped with bridged silsesquioxane for colon-specific drug delivery. Microporous and Mesoporous Materials, 184, 83-89. doi:10.1016/j.micromeso.2013.09.024Teruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511Viscido, A., Capannolo, A., Latella, G., Caprilli, R., & Frieri, G. (2014). Nanotechnology in the treatment of inflammatory bowel diseases. Journal of Crohn’s and Colitis, 8(9), 903-918. doi:10.1016/j.crohns.2014.02.024Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751Perry, M. J., Mendes, E., Simplício, A. L., Coelho, A., Soares, R. V., Iley, J., … Francisco, A. P. (2009). Dopamine- and tyramine-based derivatives of triazenes: Activation by tyrosinase and implications for prodrug design. European Journal of Medicinal Chemistry, 44(8), 3228-3234. doi:10.1016/j.ejmech.2009.03.025Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-

    Nanosensor for Sensitive Detection of the New Psychedelic Drug 25I-NBOMe

    Full text link
    This is the peer reviewed version of the following article: E. Garrido, M. Alfonso, B. Díaz de Greñu, B. Lozano-Torres, M. Parra, P. Gaviña, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, Chem. Eur. J. 2020, 26, 2813, which has been published in final form at https://doi.org/10.1002/chem.201905688. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This work reports the synthesis, characterization, and sensing behavior of a hybrid nanodevice for the detection of the potent abuse drug 25I-NBOMe. The system is based on mesoporous silica nanoparticles, loaded with a fluorescent dye, functionalized with a serotonin derivative and capped with the 5-HT2A receptor antibody. In the presence of 25I-NBOMe the capping antibody is displaced, leading to pore opening and rhodamine B release. This delivery was ascribed to 5-HT2A receptor antibody detachment from the surface due to its stronger coordination with 25I-NBOMe present in the solution. The prepared nanodevice allowed the sensitive (limit of detection of 0.6 mm) and selective recognition of the 25I-NBOMe drug (cocaine, heroin, mescaline, lysergic acid diethylamide, MDMA, and morphine were unable to induce pore opening and rhodamine B release). This nanodevice acts as a highly sensitive and selective fluorometric probe for the 25I-NBOMe illicit drug in artificial saliva and in sweets.The authors thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P) and the Generalitat Valencia (PROMETEO/2018/024) for support. E.G. is grateful to the Spanish MEC for her FPU grant. The authors also thank the Electron Microscopy Service at the UPV for support.Garrido-García, EM.; Alfonso-Navarro, M.; Díaz De Greñu-Puertas, B.; Lozano-Torres, B.; Parra Álvarez, M.; Gaviña, P.; Marcos Martínez, MD.... (2020). Nanosensor for Sensitive Detection of the New Psychedelic Drug 25I-NBOMe. Chemistry - A European Journal. 26(13):2813-2816. https://doi.org/10.1002/chem.201905688S281328162613World drug report. United Nations Office on Drugs and Crime (UNODC). Inform2018;European drug report: Trends and Developments. European Monitoring Centre for Drugs and Drug Addition (EMCDDA). Inform2018.Zuba, D., Sekuła, K., & Buczek, A. (2013). 25C-NBOMe – New potent hallucinogenic substance identified on the drug market. Forensic Science International, 227(1-3), 7-14. doi:10.1016/j.forsciint.2012.08.027Poklis, J. L., Raso, S. A., Alford, K. N., Poklis, A., & Peace, M. R. (2015). Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and Other Dimethoxyphenyl-N-[(2-Methoxyphenyl) Methyl]Ethanamine Derivatives on Blotter Paper. Journal of Analytical Toxicology, 39(8), 617-623. doi:10.1093/jat/bkv073Agenda item 4.19.Expert Committee on Drug Dependence. Thirty-sixth Meeting. Geneva 16–20 June2014(World Health Organization).Batisse, A., Taright, N., Chevallier, C., Marillier, M., & Djezzar, S. (2016). «Dual disorder with drugs»: Comparison of two French databases. European Psychiatry, 33(S1), S72-S72. doi:10.1016/j.eurpsy.2016.01.005Rickli, A., Luethi, D., Reinisch, J., Buchy, D., Hoener, M. C., & Liechti, M. E. (2015). Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology, 99, 546-553. doi:10.1016/j.neuropharm.2015.08.034Lawn, W., Barratt, M., Williams, M., Horne, A., & Winstock, A. (2014). The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. Journal of Psychopharmacology, 28(8), 780-788. doi:10.1177/0269881114523866Kueppers, V. B., & Cooke, C. T. (2015). 25I-NBOMe related death in Australia: A case report. Forensic Science International, 249, e15-e18. doi:10.1016/j.forsciint.2015.02.010Laskowski, L. K., Elbakoush, F., Calvo, J., Exantus-Bernard, G., Fong, J., Poklis, J. L., … Nelson, L. S. (2014). Evolution of the NBOMes: 25C- and 25B- Sold as 25I-NBOMe. Journal of Medical Toxicology, 11(2), 237-241. doi:10.1007/s13181-014-0445-9Shanks, K. G., Sozio, T., & Behonick, G. S. (2015). Fatal Intoxications with 25B-NBOMe and 25I-NBOMe in Indiana During 2014. Journal of Analytical Toxicology, 39(8), 602-606. doi:10.1093/jat/bkv058Da Cunha, K. F., Eberlin, M. N., & Costa, J. L. (2017). Development and validation of a sensitive LC–MS/MS method to analyze NBOMes in dried blood spots: evaluation of long-term stability. Forensic Toxicology, 36(1), 113-121. doi:10.1007/s11419-017-0391-8Caspar, A. T., Helfer, A. G., Michely, J. A., Auwärter, V., Brandt, S. D., Meyer, M. R., & Maurer, H. H. (2015). Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MSn, and LC-HR-MS/MS. Analytical and Bioanalytical Chemistry, 407(22), 6697-6719. doi:10.1007/s00216-015-8828-6Andrade, A. F. B., Mamo, S. K., & Gonzalez-Rodriguez, J. (2017). Rapid Screening Method for New Psychoactive Substances of Forensic Interest: Electrochemistry and Analytical Determination of Phenethylamines Derivatives (NBOMe) via Cyclic and Differential Pulse Voltammetry. Analytical Chemistry, 89(3), 1445-1452. doi:10.1021/acs.analchem.6b02426Coelho Neto, J. (2015). Rapid detection of NBOME’s and other NPS on blotter papers by direct ATR-FTIR spectrometry. Forensic Science International, 252, 87-92. doi:10.1016/j.forsciint.2015.04.025Wu, X., Eriksson, C., Wohlfarth, A., Wallgren, J., Kronstrand, R., Josefsson, M., … Konradsson, P. (2017). Synthesis and identification of metabolite biomarkers of 25C-NBOMe and 25I-NBOMe. Tetrahedron, 73(45), 6393-6400. doi:10.1016/j.tet.2017.09.024Slowing, I. I., Vivero-Escoto, J. L., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous silica nanoparticles: structural design and applications. Journal of Materials Chemistry, 20(37), 7924. doi:10.1039/c0jm00554aAznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kGiménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5Meng, H., Liu, Y., Zhai, Y., & Lai, L. (2013). Optimization of 5-hydroxytryptamines as dual function inhibitors targeting phospholipase A2 and leukotriene A4 hydrolase. European Journal of Medicinal Chemistry, 59, 160-167. doi:10.1016/j.ejmech.2012.10.05
    corecore